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Abstract 
 
The vast majority of baffled shell-and-tube heat exchangers that have been studied in the past 
are cylindrical in design.  Correlations developed for these designs may not always be 
applicable for a rectangular geometry since the fluid flow on the shell side can be 
considerably different than that in a circular geometry.  In this paper we present the results of 
a shell-side flow simulation for a rectangular cross-section shell-and tube heat exchanger that 
is being designed for cooling and condensing the water vapor in the flue gas from a natural-
gas-fired power plant.  Numerical solutions to the flow system were used to evaluate 
alternative design parameters, including the number of baffles, baffle dimensions, orientation 
of baffles etc. to improve the heat exchanger performance.  The results show that a 
substantial fraction of the tubes immediately underneath the baffles are flow starved. As a 
result, changing the basic design parameters of the heat exchanger do not necessarily 
improve the heat exchanger performance: either the heat transfer may not improve 
significantly, or the pressure drop will become unacceptably high.  Thus, to obtain optimal 
heat transfer performance a number of ideas for redistribution of flow need to be 
investigated.  It should also be noted that even if nearly uniform flow distribution is achieved 
for all regions, the heat transfer may not be the highest because the average flow velocity 
(and hence heat transfer coefficient) may not be the highest. 
 
 
1. INTRODUCTION 
 
1.1 Background and Objective  
Baffled shell-and-tube heat exchangers are popular heat exchangers used in a wide range of 
thermal engineering applications.  These devices have been studied extensively in the past, 
including experimental, numerical and analytical approaches.  The vast majority of these 
devices, however, are cylindrical in design.  Far less common is a rectangular geometry. 
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Fluid flow on the shell side of shell-and-tube heat exchangers can be very complicated 
depending upon the particular design geometry.   As a result, heat transfer and friction drop 
correlations available in the literature may not be always applicable if none are to be found 
for the specific geometry and for the valid range of governing dimensionless numbers in the 
correlation.   Furthermore, the choice of optimal design parameters (number of baffles, 
dimensions and orientation of baffles, etc.) may not be always obvious.  As a result, 
numerical flow visualization via Computational Fluid Dynamics may provide valuable 
insight and benefit for design purposes. 
 
In this paper we present the results of flow simulation for a rectangular cross-section shell-and 
tube heat exchanger that is being designed for cooling and condensing the water vapor in the 
flue gas from a natural-gas-fired power plant.  The tubes in the device are actually two-phase 
thermosyphons, which provide excellent heat transfer characteristics.  
 
In shell and tube heat exchangers with baffles, the fluid on the shell side must undergo at least 
a few 180° changes in flow directions.  As a result, it is to be expected that many regions of 
many tubes may be flow starved.  This departure for non-uniformity of flow (velocity) 
distribution is clearly a function of the particular design geometry.  The heat transfer and 
pressure drop performance of the designed heat exchanger are clearly dependent on flow 
distribution.  Thus, to obtain optimal heat transfer performance a large number of ideas (for 
redistribution of flow) need to be investigated.  In order to understand the performance for our 
DEWCOOL (see below) heat exchanger basic design and to generate ideas for design 
improvements, we have performed numerical flow visualizations via SOLIDWORKS 
commercial software. 
  
There are many standard methods for the shell-side design for shell-and-tube heat exchangers.  
For example, among these are the Bell-Delaware and Kern methods [1].  Clearly, these would 
be applicable for the many standard shapes of shell-and-tube heat exchangers on which these 
methods are based upon.  For appreciably different design geometries other numerical 
computational methods must be used to optimize the heat exchanger design.   An extensive 
review of CFD analyses of heat exchangers for design evaluation is provided by Bhutta et al 
[2].  It documents various models and commercial CFD codes used by various investigators 
along with comments on comparison of CFD predictions with experimental data where 
available.   A vast majority of such analyses are for circular cross-section shells and very 
specialized novel designs. 
 
In addition to the CFD models that simulate real objects like tubes in the shell, there are also 
numerical methods that are based upon a resistance model for the tube bundles.  He et al. [3] 
used such a numerical computational model that is based upon the concept of distributed 
resistance and a porous medium model (instead of simulating actual tubes) to simulate the flow 
on the shell side for various baffle configurations.  This analysis was also for a circular cross-
section shell.  Ozden and Tari (4) investigated the shell side design performance of circular 
cross-section shell-and tube heat exchanger as a function of baffle spacing, baffle cut and shell 
diameter using a commercial CFD code.  They compared their predictions to the Bell-Delaware 
and Kern methods and found that the CFD predictions for total heat exchange rate in very good 
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agreement with the Bell-Delaware method.  They also found large regions of low velocity 
recirculation zones between baffles. 
 
The objective of this investigation was to evaluate the details of the flow pattern (velocity 
distribution) on the shell side and the performance (pressure drop, sensible heat removal rate) 
of the DEWCOOL unit for a few design configurations.  Velocity distribution patterns could 
provide clues to better design configurations, or at least show the reasons why some design 
modifications do not yield better results.  Since SolidWorks flow module does not include 
two-phase flow and condensation, it is not expected to provide the correct heat removal rate 
due to condensation heat transfer.  Nevertheless, it is expected to show which design (in 
terms of number of baffles, their locations, or other flow diverting obstructions) is better. 
 
1.2 The Heat Exchanger 
A 3-D drawing of the heat exchanger is shown in Figure 1.  It contains 45 1.00-inch (O.D.) 
tubes arranged in a rectangular pattern.  The 1 meter long tubes are made of high thermal 
conductivity (15 W/m.K) polyphenylene sulfide (PPS)  polymer with 70% exfoliated 
graphite. The tubes are manufactured by Technoform Kunststoffprofile GmbH in Germany.  
 
The heat exchanger has several baffles in it that force the flow alternately across the tube 
bundles, similar to many tube-in-shell heat exchangers. The baffle plates are 1/32” thick 
sheet metal, and the number and position of the baffles can be adjusted as desired.  The 
baffles have either 1” x 1” square holes or 1” round holes for polymer tubes to pass through.  
In practice, the baffles are made from two interlaced metal sheets that form 1” x 1” square 
holes around the tubes.  The corners of the square opening provide a small path for flue gas 
to flow through.  These openings can be covered up with thin washers to seal the corners and 
produce, effectively, 1” round holes that completely seal around the tubes.  The washer 
material can be thin plastic, felt, or aluminum foil.   Both configurations were explored in 
this study.  A larger number of baffles increases heat transfer, but the pressure drop increases 
as well.   For this study, it was desirable to keep the pressure drop through the heat exchanger 
to no more than 1 inch of water (250 Pa). 
 
The tubes actually are configured as thermosyphons, which are two-phase heat exchange 
devices that provide extremely high heat transfer. The tubes contain a saturated liquid-vapor 
mixture of water under vacuum.  Water is pumped to the top of the tubes to form a thin liquid 
film on the inside of the tubes. Heat passing into the tube evaporates the liquid film, whose 
vapor is carried to a separate external condenser where heat is removed to condense the 
vapor back to liquid and the process repeats.   Because of the extremely high heat transfer 
rates inside the thermosyphon, for the purposes of Computational Fluid Dynamics (CFD) 
simulation, we shall assume that the inside surface temperature of the tubes is a constant 30 
ºC.  Thus, only the shell side fluid flow (and heat transfer) and thermal conduction within the 
tube is simulated. 
 
 
 
 
2. CFD FLOW SIMULATION 
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SOLIDWORKS Premium 2016 with embedded SOLIDWORKS Flow Simulation module 
was used for all simulations.  The mesh sizes for these computations ranged from 3.5 million 
to 3.8 million.  The total CPU time for the 3 Baffles-Modified run was 16 hours and 21 
minutes.  For all other cases the CPU time was about 4 hours and 16 minutes.  The 
computations were made on a PC with Intel (R) Core(TM) i7-3770K CPU running at 
3.50GHz. 
 
The resulting SolidWorks simulations provide the pressure drop, flow patterns and 
convective heat transfer through the system. The SOLIDWORKS flow simulation is 
incapable of calculating phase change heat transfer, however, the results are still of utility 
both for the pressure drop and to perform relative comparisons of the designs.  Once a 
particular configuration has been down-selected, a more comprehensive (and much more 
time consuming) analysis will be performed that includes the phase change heat transfer.  
This can be done, e.g., with FLUENT. 
 
2.1 Inlet and Outlet Boundary Conditions 
 
For these simulations all shell walls are assumed to be real with friction (zero slip velocity) but 
are adiabatic.  Thus, only the heat transfer from the tubes is calculated.  This not only saves 
computational time, but also provides a lower bound for the heat removal rate from the flue 
gas.  The baffle plates are also assumed to be adiabatic but real with friction.   
 
To simulate the flue gas, humid air at a temperature of 45 ºC, a relative humidity of 100%, and 
a flow rate = 0.218 kg/s is used, since these are the conditions that will be used in experimental 
validation, and are very close to the composition of the actual flue gas.  The temperature and 
relative humidity conditions are required for the flue gas to condense on the thermosyphon tube 
walls.   This temperature is considerably cooler than the exhaust temperature of a traditional 
power plant, so some upstream cooling is required before delivering the flue gas to the heat 
exchanger for condensation.  
 
At the exit face of the computational domain, the pressure is assumed to be atmospheric minus 
1 inch (250 Pa) of water, i.e., about 101 kPa. 
 
2.2 Setup 
 
Several versions of the 3-D drawing shown in Figure 1 were setup in SolidWorks for flow 
simulation:  two versions each for 4 Baffle design and 3 Baffle design with 1” x 1” square 
holes, and one version of 3 Baffle design with 1” round holes.  The version labeled “Base 
Design” (shown in Figure 1) is with 4 baffles and 1” square holes.  Drawings of other versions 
are shown in Figures 2 (4-Baffles-modified), 3 (3-Baffles), and 4 (3-Baffles-modified), 
respectively.  Only the version labeled as 3-Baffles-Round Hole has 1” round holes in the 
baffle plates. 
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Figure 1.  A 3-D rendering of the DEWCOOL shell-and-tube Heat Exchanger for the 4-Baffle 
Base Design configuration.  The front wall of the shell is transparent for visualization of tubes.  

Exit duct not shown here. 
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Figure 2.  A 3-D rendering of the DEWCOOL shell-and-tube Heat Exchanger for the 4-

Baffle - Modified Design configuration 
 

 
Figure 3.  3-D renderings of the DEWCOOL shell-and-tube Heat Exchanger for the 3-Baffle 

Design configurations.  LEFT: Baffles with Square Holes,  RIGHT: Baffles with Round 
Holes. 
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Figure 4.  A 3-D rendering of the DEWCOOL shell-and-tube Heat Exchanger for the 3-

Baffles - Modified (with square holes) Design configuration. 

 
3. RESULTS AND DISCUSSION 
 
A summary of the results for the pressure drop and overall heat removal rate for all the design 
options is shown in Table 1.   
 
Table 1:  Simulation Summary of Overall Pressure Drop and Heat Removal Rate for Various 

Design Configurations of the DEWCOOL Heat Exchanger Unit. 
 

Baffle Design Pressure Drop 
(Pa) 

Heat Removal 
Rate (W) 

Comments 
 

4-Baffles-Base Design 254 4030 Base Design. 
4-Baffles - Modified 475 4230 Undesirable.  Pressure drop too large 

with minimal heat transfer increase. 
3-Baffles 160 3560 Base case 
3-Baffles – Modified 162 3230 Undesirable.  Lower heat transfer. 
3-Baffles with round 
Holes (no leakage) 

195 3790 Higher heat transfer rate with modest 
increase in pressure drop. 

 
3.1  4-Baffles Designs 
 
Flow trajectories for the 4-baffle base design are shown in Figures 5 and 6.  The color code 
indicates the total magnitude of the velocity vector.  It should also be noted that because of 1” 
square holes in the baffle plates some of the fluid can be seen crossing the baffle plates 
directly. As can be clearly seen, the velocity distribution below the baffles is highly non-
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uniform after the flow undergoes a 180º turn.  These figures show that a large fraction of the 
surface area for most tubes are only minimally participating in heat transfer due to very low 
flow velocities surrounding the tubes in these regions.  This can also be seen from the contour 
plots of velocity at several horizontal planes below and above the baffle plates shown in 
Figures 7 through 9.   
 
Based upon these results, an attempt was made to improve the heat transfer rate by trying to 
deflect some of the airflow upwards as it is making a U-turn.  As shown in Figure 2, this was 
done by adding short baffles in the region just after the flow turns downward for the next 
section.  The intent was that additional baffles would re-direct the flow and produce a jet effect 
that would force some of the flow to the upper regions of the tube. Flow trajectories for this 
design are shown in Figures 10 and 11.  A comparison with Figures 5 and 6 for the base design 
shows, however, that there is little improvement in the uniformity of flow.  The reason appears 
to be that the fluid prefers to take the path of least resistance between opposite open ends 
where the baffles terminate.  As can be seen from Table 1, there is only 5% improvement in the 
heat removal rate, whereas there is a substantially larger (87%) increase in pressure drop.  
Further exploration of this approach was abandoned.  The pressure drop and convective heat 
transfer for both 4-baffle designs is shown in Table 1. 
 
A web link for the CFD flow trajectories animation for these designs is provided in Reference 
[5] 
 
The predicted pressure drop for the base case 4-baffle design was 254 Pa.  While this 
technically satisfies the pressure drop requirement of 250 Pa, if the actual device as built has a 
slightly higher pressure drop in practice, this would present a problem.  A three-baffle design 
was thus explored as well, with the intent of reducing the pressure drop.  Also, any additional 
baffle modifications to increase the heat transfer would likely not increase the pressure drop 
above the design limit. 
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A CFD simulation of a rectangular baffled, cross-flow heat exchanger has been performed to 
simulate sensible heat transfer and pressure drop through the system.  The purpose of the heat 
exchanger is to extract water from the combustion flue gas of a boiler or similar combustion 
device.  The simulations were made using SolidWorks with embedded SOLIDWORKS Flow 
Simulation module.   Both a 3-baffle and 4-baffle design were explored, with the tradeoffs 
between heat transfer and pressure explored. CFD simulations show that the use of baffles 
leads to highly non-uniform velocity distribution below the baffles.  As a result, significant 
portions of many tubes experience very low heat transfer rates because of local flow 
starvation in these regions.   The simulations provide insight for design modification 
purposes.  Two baffle modifications were attempted to improve the heat transfer, but the 
results were inconclusive. Further opportunities for study in this regard include experimental 
validation of test cases, which are in progress, and the development of correlations for 
pressure drop and heat transfer for rectangular geometries based on both modeling and 
empirical measurements. 
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