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Abstract 
 
Additive manufacturing currently plays a key role in driving the expansion of the maker 
movement and has contributed to the development of 3D printers capable of unique food 
preparation and design. While most applications of 3D food printing are concentrated on single 
serving, novelty food prototypes, there is an opportunity to explore design variations for a 
commercial, production grade 3D printer capable of creating of consistently replicable food 
items for mid-range production facilities, such as schools and hospitals. This paper outlines 
preliminary research conducted by an interdisciplinary capstone design team of mechanical and 
electrical engineering students at California State University, Fullerton (CSUF) during the 
2016/2017 academic year. A detailed overview of the capstone design course requirements and 
the team’s design method is presented. The team was broadly tasked with reverse engineering 
and manufacturing a 3D food printer and identifying limitations and future research 
opportunities. After successfully designing and constructing a working extrusion-based Cartesian 
prototype, the team created a preliminary 3D food printing design database based on a series of 
experiments. This database is populated with design variables (including syringe pressure), 
quantitative results (such as material print height), and qualitative observations (photographs, 
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written descriptions). A two-sided t-test was used to understand the prototype’s sensitivity to 
changes in key variables that impacted the printing performance. The 3D food printing design 
database provides valuable insights and baseline values for future 3D food printing research. 
Finally, scalability challenges are identified, with recommendations to meet these challenges. 
 
Introduction 
 
Continuous improvements in additive manufacturing technologies have expanded the breadth 
of possible applications for 3D printing (Wegrzyn, Golding, & Archer, 2012; Wei & Cheok, 
2012; Millen, Gupta, & Archer, 2012; Lipson, 2012; Leach, 2014; Petrick & Simpson, 2013).  
In addition to printing items from plastic and metal, opportunities now exist to print food. In 
2012, Systems and Materials Research Consultancy was awarded a NASA small business 
innovation research grant; the company had identified a practical need for 3D food printing 
in extreme environments, such as space, stating a need for a wide array of foods to be printed 
using different combinations and types of inputs, such as ingredients (Systems, 2012). 
NASA’s vision for this research was to enable astronauts to design and manufacture a variety 
of food options with a finite set of inputs, while having customizable control over portion 
size and personal taste. However, this concept has multiple challenges. Primarily, most 3D 
food printing is performed by extrusion-based methods that limit the food type and 
consistency to primarily homogenous mixtures (pastes or gels) and is unable to accommodate 
other types of food consistencies (Sun, Zhou, Yan, Huang, & Lin, 2018; Cornell University, 
2014; Cohen, Lipton, Cutler, Coulter,  Vesco, & Lipson, 2007; Cohen, Lipton, Cutler, 
Coulter, Vesco, & Lipson, 2007; Seraph Robotics, 2015). Subsequently, an opportunity 
exists to examine new methods for depositing other heterogeneous food types.  
 
This paper illustrates the efforts of undergraduate capstone design students from CSUF, who 
were broadly tasked with reverse engineering and manufacturing an extrusion-based 3D food 
printer and identifying limitations and future research opportunities. Capstone design refers 
to an engineering course, often taken during the senior year, that aims to bridge the gap 
between engineering theory and practice (Dutson, Todd, Magleby, & Sorensen, 1997). A key 
objective for the team was to broaden the practical applications of existing 3D food printing 
technologies by specifically focusing on the creation of consistently replicable foods for mid-
range production facilities, such as schools and hospitals. For example, could several 
homogeneous or heterogeneous key ingredients (sauce, dough, cheese) be interchanged 
strategically to produce different food items (pizza, calzone)?  
 
In terms of undergraduate research via capstone design, examining methods related to 3D 
food printing has multiple benefits. First, this work combines key elements of CSUF’s 
mechanical and electrical engineering curriculum, such as CAD, system-level thinking, and 
additive manufacturing. Next, many capstone students, typically engineering seniors, are 
familiar with 3D printing through previous channels: high school, extracurricular hobbies, or 
other courses (Irwin, Pearce, Anzalone, & Oppliger, 2014). Finally, capstone design is well 
studied in the literature as a mechanism for teaching engineering design and promoting 
creative thinking (Dutson et al., 2014; Dym, Agogino, Eris, Frey, & Leifer, 2005; Wood, 
Jensen, Bezdek, & Otto, 2001). 
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The following research was conducted by a student capstone design team from the two-
semester Mechanical Engineering 414/419, “Senior Design,” during the 2016/2017 academic 
year. Their work focused on identifying challenges for design scalability while considering 
manufacturing costs and applicable retail and commercial markets. This research was 
proposed and internally funded by CSUF, based on the university’s strategic plan for 
improving instructional processes that lead to increased student success. It addresses these 
processes directly, focusing on the implementation of high-impact practices in the classroom 
(Kuh, 2008; Carpenter, Morin, Sweet, & Blythe, 2017). A primary component of the senior 
design course is to collaborate with an industry sponsor/mentor who will benefit from the 
merits of this research. Ideally, these partners/collaborators would support (both financially 
and technically) this project for multiple years, and the students’ designs will improve 
iteratively. Another benefit of this research is the interdisciplinary nature that requires the 
mechanical engineering design team to collaborate with other disciplines. For this project, 
these areas include electrical engineering (electronic hardware design), computer science 
(programming), and business (market analysis, cost modeling, supply chain management).  
 
Background 
 
3D printing is a technological process where an object is created layer by layer from a file 
created by CAD software. The technology of additive manufacturing has existed since the 
early 1980s. Until the open-source release of the 3D printer Fab@Home by researchers at 
Cornell University in 2006, the printers were industrial scale and expensive (Lipson & 
Kurman, 2013). The Fab@Home Model 1 could be used in the production of a variety of 
forms and materials, including, for the first time, food (Lipson & Kurman, 2013).  
 
The basic principle for 3D printed food is solid free-form fabrication, the ability of food 
material to hold and produce a solid structure without deformity (Lipton, Arnold, Nigl, 
Lopez, Cohen, Norén, & Lipson, 2010). Currently, there are four types of 3D food printing 
techniques: extrusion-based printing, selective laser sintering, binder jetting, and inkjet 
printing (Godoi, Prakash, & Bhandari, 2016; Sun, Zhou, Huang, Fuh, & Hong, 2015; Liu, 
Zhang, Bhandari, & Wang, 2017). Extrusion-based printing is the most commonly used 
technique and is typically used for hot-melt extrusion of chocolate or for the extrusion of 
room temperature soft materials like frosting, processed cheese, and sugar cookies (Lipton et 
al., 2010; Periard, Schaal, Schaal, Malone, & Lipson, 2007). Several extrusion-based food-
printing machines are commercially available to print materials such as chocolate, dough, 
and pasta (Sun et al., 2018; Liu et al., 2017). The technique works by continuously extruding 
the material out of a moving nozzle, and the material fuses to preceding layers due to the 
material properties. The second most commonly used food printing technique is selective 
laser sintering, which works by fusing powder particles with high sugar content to form the 
solid layers. This technique has allowed for the creation of complex structures (Sun et al., 
2015; Liu et al., 2017). Binderjet printing is the process of alternating between depositing 
layers of powder and spraying a liquid binder agent. This technique has resulted in the 
printing of complex structures, including structural cakes (Izdebska-Podsiadły & Żołek-
Tryznowska, 2016). Inkjet food printing works like a standard inkjet printer for paper. The 
ink, however, is a low-viscosity food material dispensed in droplet form. This technique is 
limited to decoration or surface filling.  
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3D food printing allows food products to be designed and fabricated to meet personal and/or 
nutritional requirements and to create custom designs. Printing food allows for freedom of 
design regarding 3D shape and the composition, texture, structure, as well as taste (Sun et al., 
2015). In addition, this process is capable of creating unique goods and structures that require 
specialized human skills or cannot be made by humans. 3D printing food additionally allows 
for the customization of the nutritional content (Wegrzyn, Golding, & Archer, 2012; Sun et 
al., 2015; Severini & Derossi, 2016; Severini, Derossi, Ricci, Caporizzi, & Fiore, 2018; 
Yang, Zhang, & Bhandari, 2017). Therefore, personalized food can be created based on a 
person’s dietary restrictions, allergies, or health goals.  
 
The accessibility of additive manufacturing technology has contributed to innovative 
advances in 3D food printing for both academic and commercial applications (Sun et al., 
2015). However, current techniques need further investigation. There are many limitations 
including accuracy and precision (Liu et al., 2017). Once these challenges are overcome, 
wider application is expected. 
 
Methodology 
 
For this research, the following key performance metrics were provided to the capstone 
design team, each applicable to their 3D printer prototype: 
 
 Functionality: Does the machine perform its intended function of printing multiple and 

different edible foods? 
 Scalability: Can this design scale to mid-level production applications (schools)? 
 Robustness: Will this design produce consistently replicable and reliable food prints? 
 Cost: Is this design financially competitive with existing 3D food printing products? 

 
Since most applications for 3D food printing are concentrated on single serving, novelty food 
prototypes, the team was asked to consider challenges for designing and manufacturing a 
commercial, production grade 3D printer capable of creating of consistently replicable food 
items for mid-range production facilities, such as schools and hospitals. Creating a 3D printer 
capable of producing a variety of standardized food products for mid-level production could 
significantly improve food health and increase distribution efficiency, while minimizing 
waste and reducing costs. This work has broad reaching applications in the domains of 
mechanical engineering, additive manufacturing, and food science. Another benefit of this 
research is its compatibility with the capstone design course series (either CSUF’s or another 
institution’s), which is formatted to allow annually reoccurring research projects on the same 
topic. 
 
The team’s method is based on Ullman’s four stages of product design including project 
definition, product definition, conceptual design, and product development (Wang & Shaw, 
2005). An outline of the team’s method is shown in Figure 1. The capstone design team 
worked within the constraints of the course, during CSUF’s 2016/2017 academic year. This 
limited the team to two 15-week semesters to complete their prototype, and their budget 
could not exceed $1,000. In addition, the team was required to track all design, 
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manufacturing, and testing activities in a cloud-based document-sharing platform (Google 
Drive), to pass information on to next year’s team. Table 1 provides an outline of key course 
requirements and justification, to help guide the students’ design. 
 
Project/Product Definition 
 
The capstone design team student selection was based on students who were interested in 
additive manufacturing but did not necessarily have experience in this domain. As described 
above, the project definition and key objectives were already outlined by the capstone design 
advisor. Subsequently, production definition was the first component of the team’s method. 
 

 
Figure 1. Student team design method. 
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An examination of the literature and existing technologies was performed, where the students 
found current work relating to both the fundamental science of additive manufacturing and 
commercial applications for 3D food printing. This review helped guide them during the 
design ideation phase and identify potential 3D food printing methods that could be 
replicated, given the temporal and financial constraints of the course. The team selected the 
extrusion-based food printing method, motivated by opportunities defined in the literature 
(Sun et al., 2018).  

 
Table 1. Key course requirements and justification. 

 
Design Task Justification 

Create Gantt chart Track critical deadlines and responsible 
individual 

Perform literature review Explore state of-the-art research and product 
benchmarking 

Begin cloud-based research documentation 
system (Google Drive) 

Archive and document research to pass on to 
future researchers 

Attend weekly update meetings with 
instructor 

Receive feedback on design and 
manufacturing choices 

Present bi-weekly 10-minute research update 
to class 

Gain critical evaluation from peers 

Submit project abstract to undergraduate 
research conference (2016 Southern 
California Conference for Undergraduate  
Research [SCCUR]) 

Expose students to peer review research 
process 

Create abstract based research poster Understand how to concisely present work 
with limited time/space 

Present research at undergraduate conference 
(such as SCCUR) 

Opportunity to disseminate work, and receive 
feedback from the research community 

Give 20-minute research update to class Gain critical evaluation from peers 
Display final prototype and poster at 
university-wide event (2017 CSUF Student 
Project Showcase) 

Opportunity to disseminate work, and receive 
feedback from peers outside of department 

Submit final research report Allow students to practice technical writing 
 
Conceptual Design 
 
The conceptual design phase was guided by project definition requirements and the course 
design task requirements listed in Table 1. A functional decomposition of several extrusion-
based food printers was performed, to help identify potential design alternatives. The most 
common method for depositing food to the build surface is via a syringe, activated either 
pneumatically or with an electromechanical power screw. This syringe is then coupled with a 
mechanism for translating three different axes. Design trade-offs were examined between 
each of the multi-axis food printer approaches (Cartesian, Delta, Polar, Scara) identified by 
Sun et al. (2018).  
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Results 
 
Based on the testing configuration outline, the team chose Betty Crocker Rich and Creamy 
Chocolate Frosting and Jiffy Corn Muffin Mix as their material types. A circle and star 
pattern were used for the print geometry. Discrete syringe pressure values were set at 
43.7kPa and 87.3kPa, drawing from preliminary syringe pressure tests. Nozzle height 
(distance from the print bed) was initially set at 5mm, based on initial extrusion testing. For 
all of the experiments presented, 4 layers of material were printed, with the syringe nozzle 
moving 5mm distance upward after each layer. Material height values were recorded for each 
discrete layer.  
 
To organize the experimental data, the team created a preliminary 3D food printing design 
database, which is populated with the design variables, the quantitative and qualitative 
performance metrics, and a photograph of the print from each experiment. In total, 39 
individual layers were printed and analyzed. Table 3 displays a relevant subset of the 
database. 
 
Results Interpretation 
 
Two-sided, two-sample unequal variance t-tests were performed to help identify which 
design variables (material type, print geometry, syringe pressure) have a significant impact 
on the quantitative design performances measured (material width, material height). The 
number of samples (N), mean (M), standard deviation (SD), and t-test results, including the t-
value (|ݐ|), degrees of freedom (df), and the significance level (p) are given in Table 4.  
 

Table 4. T-test results. 
 

Design 
Variables 

N 
Printed Material Width (mm) Printed Material Height (mm) 

M SD |࢚|  df p M SD |࢚| df p 

Material 
Type 

Chocolate Frosting 22 9.1 2.9 
2.36 22 0.027 

5.2 0.9 
0.79 27 0.434 

Corn Muffin Mix 17 12.6 5.6 4.9 1.3 

Print 
Geometry 

Circle 17 9.2 2.8 
1.90 33 0.067 

4.6 0.7 
2.21 34 0.034 

Star 22 11.7 5.4 5.3 1.3 

Syringe 
Pressure 

43.7	݇ܲܽ 31 9.0 1.9 
3.64 7 0.004 

4.7 0.8 
4.39 9 0.002 

87.3	݇ܲܽ 8 17.0 6.7 6.6 1.1 

 
For material type, the t-test results show that there is a significant difference (p<0.05) in the 
printed material width between chocolate frosting and corn muffin mix. But there is no 
significant difference in printed material height between the two materials. For different 
printed geometries of circles and stars, there is a significant difference in printed material 
width but no significant difference in printed material height. As for syringe pressure, there is 
a significant difference in both printed material width and height between the syringe 
pressures of 43.7kPa and 87.3kPa. 
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From these results, syringe pressure has emerged as a critical design variable that impacts 
printer performance and subsequently should be considered as a key design parameter going 
forward with a new/updated design. Additionally, a more detailed study should be conducted 
to determine if there is a relationship between the viscosity of the material and the printed 
material width. Overall, these preliminary results indicate that more tests should be carried 
out with more material types, printed geometries, and syringe pressures for more insightful 
conclusions. For this future testing, quantitative measurements for geometry accuracy and 
ability to layer (instead of the qualitative measures used here) should be developed and 
implemented. 
 
Discussion and Future Opportunities 
 
This paper presents a case study of undergraduate research conducted by an interdisciplinary 
capstone design team of mechanical and electrical engineering students broadly tasked with 
reverse engineering and manufacturing a 3D food printer. Creating the framework for the 3D 
food printing design database is a significant contribution for research at the undergraduate 
level and provides valuable insights for future 3D food printing research. In addition, the 
team was able to address each of the four key performance metrics provided at the beginning 
of the capstone design course: 
 
 Functionality: The team’s conceptual design resulted in successfully printing two 

different foods. 
 Scalability: The current conceptual design is a proof-of-concept prototype and would be 

difficult to scale for mid-level production applications. However, the material loading 
challenges discussed in the next section provide insight into design attributes that will be 
required for mid-level production. 

 Robustness: Since only 39 individual layers were printed, it is difficult to conclude if this 
design will produce consistently replicable food prints. Additional experiments will be 
performed in future work to examine printing performance variation.  

 Cost: Based on the proof-of-concept design presented, this design primarily used 
commercially available components and very few custom parts. Subsequently, it could be 
financially competitive with existing 3D food printing products. 

 
Another future research opportunity is exploring the impact of post processing (packaging, 
freezing, baking) the final product for large volume applications is a. Specifically, how does 
post-processing impact the printed material (physically, aesthetically)? 
 
Material Loading Challenges 
 
One of the unexpected challenges the team faced was the time and effort required to load the 
various food types into the syringe. While low viscosity foods like corn muffin batter could 
be poured directly after mixing, higher viscosity foods like frosting had to be forced in (or 
loaded) with a spoon or spatula. Another issue with loading the food was the formation of air 
pockets throughout the column of the syringe, which resulted in discontinuity during a print. 
Cleaning the syringe and nozzle also took more effort with high viscosity foods. 
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