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Abstract 
 
While performing non-linear response history analyses of highrise buildings, designers and 
researchers discover crucial modeling questions, including use of appropriately selected and 
scaled ground motion. Once appropriate ground motions are selected, the question becomes 
how these ground motion time histories can be modified to be compatible with the design 
target acceleration response spectrum. Modification can be performed in two ways: (a) direct 
time domain scaling of the acceleration time-histories of the ground motions, and (b) 
transforming the time-acceleration data into the frequency domain, making adjustments to be 
compatible with the target spectrum, and transforming back into the time domain. Both the 
methods are mentioned in Guidelines for Performance-based Seismic Design of Tall 
Buildings (PEER 2010/05) and FEMA P-1050-1, 2105 edition. ASCE 7-10 mentions the 
direct scaling approach but does not explicitly mention the other method. The objective of 
this paper is to determine the extent of differences in response of highrise buildings using 
both time domain scaled and frequency domain adjusted ground motions. For this purpose, 
several example structures were selected to be analyzed: (a) 42-story concrete dual core wall-
frame structure, (b) 40-story steel space frame structure, and (c) 40-story buckling-restraint-
braced frame structure. Detailed non-linear models of these structures were developed in 
PERFORM-3D, and seven sets of appropriate ground motions were selected for the non-
linear time history analyses. Results from analyses show differences in the response of these 
buildings using time domain scaled and spectral matching input ground motions.   
 
1. Introduction 
 
Recent decades have seen a surge in highrise building construction around the world in high 
seismic areas. While designing those buildings, it is of paramount importance to the designer 
to select appropriate ground motions and scale those motions for the numerical analysis and 
evaluation of the design. How to scale appropriately selected ground motion to be compatible 
with a target spectrum is an important decision for the designer. Two ways to do that are 
direct time domain scaling of ground motions and transforming the time-acceleration data 
into the frequency domain, making adjustments (to be compatible with the target spectrum), 
and transforming back into the time domain. Both methods are mentioned in building 
guidelines and codes. The objective of this paper is to determine the extent of differences in 
response of highrise buildings using both time domain scaled and frequency domain adjusted 
ground motions. 
 
2. Case Study Buildings 
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The footprint of the above ground structure is 170 ft by 107 ft as shown in Figure 2. It also 
shows the location of buckling-restrained chevron braces. The building consists of four 
basement levels as shown in Figure 3a. The footprint of the basement level is 227 ft by 220 
ft. Lateral forces were entirely resisted by buckling-restraint braces. PERFORM 3D was used 
to develop a detailed non-linear model for the numerical analyses in this study. 
 

 
Figure 2. Typical plan view of the BRB building, above ground (Moehle et al., 2011).  

Reprinted with permission. 
 
2.3 40-Story Steel Space Frame Structure 
 
The steel space frame structure consists of special moment-resisting frames in both 
directions. This particular structure has three basement levels and a 120 ft by 80 ft footprint 
as shown in Figure 3b. Like the other two structures, detailed non-linear model was 
developed in PERFORM 3D (Figure 3b) for further study. 
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Figure 4. Site-specific response spectrum and seven pairs of spectrum  
compatible ground motions. 

 
3.2 Time Domain Scaled Ground Motions 
 
Time domain scaling requirements for 3D dynamic analysis are provided in Section 16.1.3.2 
of ASCE 7-10: 
 

For each pair of horizontal ground motion components a square root of the sum of the 
squares (SRSS) spectrum shall be constructed by taking the SRSS of the 5-percent 
damped response spectra for the scaled components (where an identical scale factor is 
applied to both components of a pair). Each pair of motions shall be scaled such that 
for each period in the range from 0.2T to 1.5T, the average of the SRSS spectra from 
all horizontal component pairs does not fall below the corresponding ordinate of the 
design response spectrum, determined in accordance with Section 11.4.5 or 11.4.7.  
(ASCE, 2011) 

 
The problem with these requirements is that no guidance is provided on how to deal with 
different fundamental periods in the two orthogonal directions. Because an infinite number of 
sets of scale factors will satisfy the criteria, different engineers are likely to obtain different 
sets of scale factors for the same ground motions (Soules, 2013).  
 
This study uses the two-step scaling method followed in FEMA P-751 (National Institute of 
Building Sciences, 2012): 
 
i) Scale each SRSS’d pair to the average period (Tavg) as shown in Figure 5. This factor will 
be different for each of SRSS spectra. This scale factor is denoted by S1 in Table 1. Here Tavg 
is the average of the fundamental periods in each principal direction. 
 
ii) As shown in Figure 6, the average of the scaled spectra will match the target spectrum at 
Tavg. Now a second factor (S2 in Table 1) is applied equally to each motion (already scaled 
once) such that the scaled average spectrum lies above the target spectrum from 0.2Tavg to 
1.5Tavg. 

0.00
0.20

0.40
0.60

0.80
1.00

1.20
1.40

1.60
1.80

2.00

0 2 4 6 8 10
Period (Sec)

S
a

 (
g

)

Target MCE Sa

Set1_H1

Set2_H1

Set3_H1

Set4_H1

Set5_H1

Set6_H1

Set7_H1



Proceedings of The 2018 IAJC  International Conference 
ISBN 978-1-60643-379-9 

 
 

The final scale factor for each motion is the product of the two-scale factors. Detailed 
calculation steps are provided in Table 1 for the 40-story buckling restraint braced frame 
structure. Figure 7 provides a comparison of target spectrum and the average SRSS spectrum 
of 7-pairs of motions after the scaling factor in Table 1 applied to the motions. These seven 
pairs of ground motions will be called “amplitude scaling” motions in this paper. 
 

 
 

Figure 5. Step-1 of time-domain scaling (Soules, 2013). 
 

 
 

Figure 6. Step-2 of time-domain scaling (Soules, 2013). 
 

Table 1. 40-story BRB scaling factor. 
 

Record 
number 

Earthquake Name 

SRSS 
Ordinate at 

T=Tavg 
(g) 

Target 
Ordinate 

at T=Tavg 
(g) 

S1 S2 SS = S1*S2 

Set 1 Superstition Hills-02 0.159 0.143 0.90 1.3 1.166 
Set 2 Denali, Alaska 0.063 0.143 2.26 1.3 2.942 
Set 3 Northridge-01 (Converter Sta) 0.155 0.143 0.92 1.3 1.193 
Set 4 Loma Prieta 0.099 0.143 1.44 1.3 1.877 

Set 5 
Northridge-01 (Olive View 

Med FF) 
0.102 0.143 1.39 1.3 1.812 

Set 6 Landers 0.116 0.143 1.23 1.3 1.598 
Set 7 Kocaeli, Turkey 0.078 0.143 1.81 1.3 2.357 
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