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Abstract

Thermodynamics is an important subject in engineering training and forms the basis of pure
engineering sciences. However, the performance of students in thermodynamics nationwide
is poor. Not all students with high GPAs (>3.0) are able to pass thermodynamics on the first
attempt. This study seeks to understand the correlation between the success rate in the
Fundamentals of Thermodynamics (MEEN241) and the following dependent variables:
General Physics (PHYS241), combined quizzes and reading quizzes, homework, tests,
midterm examination, final examination, and prior GPA. We also designed assignments and
assessments to capture acquired skills. These items test high-level thinking skills such as
applying a thermodynamic principle to illuminate a problem. The research question this
study tries to answer is, “How does success in quizzes and reading quizzes and prior
knowledge in thermodynamics (PHY S241) impact the success rate in MEEN241?” To
answer this question, we designed a machine-learning algorithm that is made up of decision
trees, random forest ensemble, and Naive Bayes classifiers that take as input the academic
data of students (N=111) enrolled in MEEN241. The machine-learning algorithm makes the
prediction by popular vote. The machine-learning model has an accuracy of 86.49%. The
class recall is, respectively, 90.48 and 81.25%, for true pass and true failed. The class
precision is, respectively, 86.36 and 86.67%, for predicated pass and predicted fail.
Combined quizzes and reading quizzes is the root node in six out of seven classifiers, while
PHYS241 was eliminated because the information content was less than the 0.1 threshold.
These results show that success in RRQ impacts positively on the success rate in MEEN241
while also showing that prior knowledge in the form of PHYS241 has no influence on the
success rate in MEEN241. This study suggests that students’ success depends on developing
and constantly improving good pedagogy and good study habits.
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Introduction

Engineering students’ poor performance in thermodynamics is chronic, prevalent, intolerable,
and resistant to change (Dukhan & Schumack, 2013; Dukhan, 2016). The historic average
success rate in MEEN241, Fundamentals of Thermodynamics, is 54.6% (Akangah, Parrish,
Ofori-Boadu, & Davis, 2018), meaning that a significant number of students fail the class
each semester. Karimi and Manteufel identified four categories of students who failed: (i)
students who neither attend class regularly nor complete assigned homework, (ii) students
who appeared engaged but their efforts did not result in significant learning and as a result
did poorly on exams, (iii) students with poor conceptual understanding of the material, and
(iv) students with weak conceptual understanding of thermodynamics (2014).

Although PHYS241, General Physics I, is not a prerequisite to MEEN241, the mechanical
engineering (ME) curriculum is structured so that students usually take PHY S241 prior to
MEEN241. However, some students do not follow the prescribed curriculum and take
MEEN241 before PHYS241. The ME undergraduate student handbook describes PHYS241
as “a calculus-based physics course that covers the fundamental principles of Newtonian
mechanics, heat, and thermodynamics” (Mechanical Engineering Department, 2017).

About 59% of students enrolled in the MEENZ241 class passed PHYS241, and the rest either
failed or have not taken the course. It is therefore important to understand how prior
knowledge in thermodynamics, PHYS241, helps or hinders learning and, specifically, how
this prior knowledge impacts the success rate in MEEN241. This knowledge will help
instructors more appropriately design instructions (Ambrose, Bridges, DiPietro, Lovett, &
Norman, 2010).

After surveying important literature on pedagogy, Lin, Yen, Liang, Chiu, and Guo (2016)
found that pedagogical methods and students’ cognitive ability influence how they learn
complex and abstract scientific concepts. Reasoning is an important human ability. Students
use reasoning ability to draw conclusions and to solve problems, and this ability is a good
predictor of academic achievement (Bhat, 2016). Hiebert and Grouws (2007) argue that
developing students’ quantitative reasoning skills requires providing them with opportunities
to learn by allowing students to struggle with understanding important concepts and
persisting in problem solving. Dukhan (2016) and Dukhan and Schumack (2013) identify
three main learning issues that students have in thermodynamics: 1) conceptual difficulties,
2) struggle with integrating concepts and principles, and 3) not recognizing the relevance of
thermodynamic principles in solving problems. Dukhan further reports that many instructors
have implemented several instructional strategies; however, students’ performance in
thermodynamics continues to be poor and unacceptable (2016).

In this study, we aim to elucidate the importance of prior knowledge and well-designed
assignments and assessments in promoting students’ conceptual understanding of
thermodynamics. We also seek to assess their ability to integrate known concepts and
principles in solving thermodynamic problems. The aims of this study are (i) assign reading
lessons to students to facilitate the learning of thermodynamic concepts and principles; (ii)
assign quizzes and reading quizzes (RRQ) that are designed to assess acquired skills such as
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understanding of thermodynamic concepts, outlining thermodynamic problems, stating
relevant assumptions, drawing schematics, drawing process diagrams, using calculus to
derive equations, working from fundamental principles to solve problems, and working in
consistent units; (iii) collect data on students’ performance in PHYS241; and (iv) collect data
on homework, quizzes, reading quizzes, midterm exams, etc. conducted during the semester.
We developed a machine-learning model to answer the research question: “How does success
in RRQ and prior knowledge in thermodynamics, PHYS241 General Physics, impact the
success rate in MEEN241?”

Methods
Participants

The 111 participants were college students in an introductory thermodynamics class
MEEN241, Fundamentals of Thermodynamics, during fall 2016 and spring 2017 semesters.
We collected the academic records of these students, randomized the data, and assigned a
random three-digit number to the resulting data. At the start of each semester, we collected
students’ GPAs and the letter grades of students in PHYS241. Scores in the following course
tasks were compiled at the end of the semester: homework (HW), quiz (Q), reading quiz
(RQ), tests (T), midterm (MT), final examination (FE), and cumulative weighted average
(CWA). We combined the Q and RQ to obtain RRQ.

Materials

For this study, we designed and assigned concept-intensive materials as reading lessons for
the students. Students take notes as they read through the assigned lesson, and these notes
could be used on the RQ that is based on the reading lesson. We also designed Q, RQ, and T
to assess acquired skills such as defining concepts, framing problems, stating relevant
assumptions, drawing schematics, drawing process diagrams, working from fundamental
principles, and working in consistent units. These assessments test high-level thinking skills
such as applying a thermodynamic principle to illuminate a problem.

Procedure
Data Summary. We assigned various weights to assignments and assessments. These weights

are summarized in Table 1, which also summarizes the frequency of various assignments and
assessments along with students’ success in these assignments and assessments
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Table 1. Weights assigned to various assignments and assessments.

ASSIGNMENTS & ASSESSMENTS STUDENTS' SUCCESS
Types Weights Freguency Predictor Variables %Success Rate
HWs 10% 30 HW 83.78
RQ 5% 14 RQQ 63.1
Q 15% 16 MT 63.06
MT 20% 3 T 76.58
T 20% 6 FE 24.32
FE 30% 3 GPA (High, Ave, Low) | 53.15; 45.95; 0.90
PHYS241 59.46
MEEN241 Pass-Rate 56.76

To pass MEEN241, a student must achieve a minimum CWA of 60% as well as a minimum
of 60% in any assignment or assessment to pass that assignment or assessment. It is not
mandatory to pass all course assignments and assessments to pass MEEN241. For this study,
we defined a high GPA as greater than or equal to 3.0, an average GPA is defined as less
than 3.0 but greater than or equal to 2.0, and a low GPA as less than 2.0.

Data Analysis. This study attempts to understand the relationship between the success rate in
MEEN241 and the dependent variables: General Physics (PHYS241), combined quizzes and
reading quizzes, homework, tests, midterm examination, final examination, and students’
prior GPA. To answer the research question, we used the RapidMiner data analytics platform
to develop a machine learning model that consists of three algorithms—decision tree, random
forest, and Naive Bayes. RapidMiner (2017) is an integrated extendable environment for
machine learning, data mining, text mining, and predictive analytics platform and has an
excellent drag and drop graphics capability. It has powerful algorithms capable of solving
many analytics problems. RapidMiner comes as a free or commercial version. We used the
free version in this study.

We ranked the attributes by information gain as shown in Table 2. Information gain is based
on the reduction in entropy after a dataset is split on an attribute and is a measure of a
reduction in uncertainty. Information gain measures the association between inputs and
outputs and measures the relevance of an attribute. Entropy is a probabilistic measure of
uncertainty or ignorance.
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Table 2. Attributes ranked by information gain.

Attributes Inform.ation
Gain
RRQ 0.288
FE 0.241
MT 0.186
T 0.161
GPA 0.136
HW 0.069
PHYS241 0.042

Because the information gain of HW and PHY S241 is less than the threshold value of 0.1, we
subsequently dropped them. We examined the correlation between the remaining attributes
and did not find a strong correlation. We designed three classifiers that take these attributes
as inputs to predict the success rate in MEEN241. Prediction is based on the voting system.
Figure 1 shows the basic concept.

RRQ—>
FE—>
MT __JSuccess-rate
MEEN241
T—>
GPA——>|

Figure 1. Conceptual model to predict success rate in MEEN241.

Decision Tree (DT) with Cross-Validation. We optimized the DT with respect to maximum
depth, criterion, apply pre-pruning, and apply pruning. We obtained the optimized
parameters as maximum depth of the decision tree: 6; criterion: accuracy; apply pre-pruning:
true; and apply pruning: false. This model includes three subsets, derived by using a linear
sampling method. In the cross-validation method, we used two subsets for training the DT
and one subset for testing.

A minimum 0.1 Gini index gain, a measure of impurity or entropy of a node based on
observed probabilities, was used. A confidence of 0.1 was used in making predictions based
on the decision tree. This parameter specifies the confidence level used for the pessimistic
error calculation of pruning (RapidMiner, 2014). The pessimistic pruning method uses
pessimistic statistical correlation test (Quinlan, 1993).

Random Forest Classifier. A random forest classifier generates several DT ensembles, and it
does not overfit model to data. In a case of a classification problem, the classifier outputs the
class that is the mode of the classes, and in the case of a regression problem, it outputs the
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mean prediction of the individual trees. The classic bootstrap method was used in this study,
where three subsets were created at random with replacements from the original data.
RapidMiner randomly selects the variables and decides on the best split to the node. This
method does not prune the trees. We applied a minimal Gini index of 0.1 and a confidence of
0.1.

Naive Bayes Classifier. The Naive Bayes classifiers are a family of simple “probabilistic
classifiers” and denote a supervised learning method in addition to a statistical method for
classification. The method applies the Bayes’ theorem with strong (naive) independence
assumptions between the attributes. It assumes a certain probabilistic model to calculate
uncertainty about the model in a vigorous way by determining probabilities of the outcomes.
It is capable of solving diagnostic and predictive problems. Bayesian classification provides
practical learning algorithms and can combine prior knowledge with observed data. It
calculates explicit probabilities for hypothesis and it is robust to noise in the input data.

The process diagrams for the ensemble algorithm are shown in Figure 2.

Cross vidaton store (a)Ensembled Machine
Ve an bk B ﬂl. > . Learning Model
-
(b)Vote, Apply model and
gy o () D g D Performance operators
"y ~(--CE, ¢~ = = embedded in the Cross

Validation operators

e ,_ (c)Decision Tree, Random

L4 : Forest and Naive Bayes

P ' operators within the Vote
- operator

Figure 2. Ensembled machine learning model comprising decision tree, random forest and
Naive Bayes methods.

Results
Data Summary

The boxplot distributions of the dependent variables are shown in Figure 3.
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Boxplot of RRQ, FE, MT, T Boxplot of GPA
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Figure 3. Distribution of students’ data: (a) Assignments and assessments, (b) GPA.
Confusion Matrix
The confusion matrix is shown in Table 3.

Table 3. Confusion matrix of ensembled machine-learning algorithm.

True PASS | True FAILED | Class Precision
Predicated PASS 57 9 86.36%
Predicated FAILED 6 39 86.67%
Class Recall 90.48% 81.25%

The machine-learning model has an accuracy of 86.49%. The class recall or sensitivity are
90.48% and 81.25%, respectively, for true pass and true failed. The class recall, which is
expressed as a percentage, is defined as the ratio of relevant instances that have been
retrieved over the total amount of relevant instances. The class precision or positive
dependent value is 86.36% and 86.67%, respectively, for predicated pass and predicated
failed. The class precision is defined as the ratio of relevant instances among the retrieved
instances.

Results from Modeling

Decision Tree Algorithm. Figure 4 shows a schematic of the details of the decision tree. The
highest node, RRQ, in the tree is the root node and represents the attribute with the lowest
entropy or uncertainty. The tree is built by first determining which attribute can best separate
an impure node into children (internal) nodes that are purer than the parent node. This
attribute is then used to split the node. The children nodes are FE and T. This process is
repeated until a node is pure or too small to be split further, producing the leaf nodes—
FAILED and PASS. A number of different criteria can be employed in this calculation;
however, the Gini index criterion is used in this study.
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Figure 4. Decision tree with cross-validation.

The class label of an impure leaf is obtained from the highest occurring value of the target
variable or class and this value is indicated beneath the leaf node. The decision tree predicts
that out of 62 students who passed both RRQ and T, 54 students (87.1%) passed MEEN241.
Of the 8 students who passed RRQ but failed T, 6 (75%) failed MEEN241. Similar analysis
could be conducted for the other branches.

Random Forest Decision Tree Ensemble. Figure 5 shows six (a-f) different decision trees
generated for this study, using stratified sampling with three subsets to guarantee that the
distribution of the class in the subsets is the same as that in the whole dataset.

RRQ RRQ
Failed@  PassedQ Failed® FPassedQ
FAILED
- ! e T
FailedT PassedT FailedFE PassedFE FailedT PassedT
6/7.55.750061/70, 87 1% B B
31/34,91.2% 0 /2 1005 Mo/9, 1005:J56/66, 84.8%
a
RRQ MT
Faileds  PassedQ FailedMT PassedMT
FAILED
r— T FAILED T
32/42, 76.2% i I
/22, 76.2% FaledT PashgeT 26/37,70.3% FailedT PassedT
- I
1/16, 68.7%)55/58, 94.8%
() (d)
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Figure 5. Random forest decision tree ensemble.

Of the six random forest decision trees, five have RRQ as the root node while the remaining
tree has MT as the root node. Taking the decision tree (e) as an example, the two students
who passed RRQ, failed T, and have high GPA also passed MEEEN241. More than half of
111 students (53.15%) have GPAs equal or greater than 3.0. Furthermore, all students with
an average GPA who passed RRQ and failed T also failed MEEN241. However, the number
of students with high or average GPAs who passed or failed MEEN241, respectively, are too
small to draw any conclusions.

Discussion

This research looks at the manner by which the dependent variables GPA, RRQ, T, MT, and
PHYS241 affect the success rate in MEEN241. Class assignments and assessments were thus
designed in line with the problem-solving approach shown in the course textbook (Cengel &
Boles, 2002). Resources such as teaching assistants and the instructor’s office hours were
also accessible to students to promote learning. In addition, students periodically received
reading assignments.

A machine-learning algorithm to explore the relationship between dependent variables and
success rate in MEEN241 was developed. The model has a good accuracy of 86.49%. The
model correctly predicted 57 true pass out of 63 cases and correctly predicted 39 true failed
out of 48 cases. In this study, we seek to understand the impact of the dependent variables on
the success rate in MEEN241. Therefore, a model with a high class recall and precision is
needed. The class recall is, respectively, 90.48 and 81.25%, for true pass and true failed. The
class precision is, respectively, 86.36 and 86.67%, for predicted pass and predicted failed.
Although a high class precision for predicted pass is needed, the difference is statistically
insignificant.

The information content in HW and PHY S241 are uncertain and, as a result, their
information gain is less than the threshold of 0.1. This discovery was found to be quite
alarming. Akangah et al. determined that HW assignments were not helpful because students
usually either copied from the solution manual or did not complete assigned HW (2018).
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This finding contradicts the general belief among school leaders, teachers, and parents that
homework is a useful educational tool (Falch & Rgnning, 2011). HW is influenced by many
factors and effective HW design can promote student learning (Pelletier & Normore, 2007;
Planchard, Daniel, Maroo, Mishra, & McLean, 2015; Bas, Senturk, & Cigerci, 2017). HW
assignments are given for tutorial purposes, such as offering students with the chance of
reviewing or practicing material that has already been presented in the class. When students
copy from the solution manual or fail to submit their HW, they circumvent the process and
the system fails. When students struggle with grasping important concepts and persisting in
problem solving, they develop reasoning skills and that promotes academic achievement
(Bhat, 2016; Hiebert & Grouws, (2007).

It was determined, however, that prior knowledge in PHYS241 has no influence on the
success rate in MEEN241. Even though the curriculum of PHYS241 deals with some of the
basic concepts in thermodynamics such as heat and should impact the passing rate in
MEEN241, it does not do so. This finding is in accordance with conclusions made in
Akangah et al. (2018). The information gain in PHSY241 (~0.042) is low, and there is no
association between success in PHSY241 and success in MEEN241. Ambrose et al. (2010)
concluded that students’ prior knowledge can help or hinder their learning, but the data in
this work does not support this conclusion, suggesting that course content in PHYS241 has
no relevance to thermodynamics. We suggest a curriculum review to understand this
discrepancy.

The research results indicate that success in RRQ positively impacts the success rate in
MEEN241. RRQ has the highest frequency of testing among the dependent variables. We
observed the effect of frequent classroom teaching on student achievement. Many researchers
agreed that, when done right, frequent testing helps students retain concepts longer (Bangert-
Drowns, Kulik, & Kulik, 1991; De Paola, & Scoppa, 2011; Karpicke, 2012; Carpenter, 2012;
Einstein, Mullet, & Harrison, 2012).

The information gain in GPA is higher than the threshold value of 0.1; however, the
information gain is not high, and GPA is therefore not a very useful attribute for predicting
the success rate in MEEN241. GPA is not a root node and only made it as a branch node in
one out of six decision trees. GPA is a very vital parameter employed in admissions and job
recruitment decisions among others. Notwithstanding all these, several studies have indicated
that GPA can easily be predisposed to reporting biases (Felton & Koper, 2005), tenure of
faculty members (Karimi & Manteufel, 2013), student-faculty interaction and desire to excel
in college (Lambert, Rocconi, Ribera, Miller, & Dong, 2012), students engaging in part-time
work during the semester (Dundes & Marx, 2006). As a result of these influences on GPA, it
is therefore not surprising that GPA is not the most important factor in predicting who passes
MEEN241.

Conclusions

This paper assesses the correlation between the success rate in MEEN241 (56.76%) and the
following dependent variables: General Physics (PHYS241), combined quizzes and reading
quizzes, homework, tests, midterm examination, final examination, and students’ prior GPA.
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We used the entropy method to rank the dependent variables and eliminated variables with
information gain less than the threshold of 0.1. The resulting dependent variables are T, MT,
FE, GPA, and RRQ.

Class assignments and assessments were designed to evaluate acquired skills such as
understanding of thermodynamic concepts, framing problems, stating relevant assumptions,
drawing schematics, drawing process diagrams, using calculus, working from fundamental
principles, and working in consistent units. These assignments and assessments test high-
level thinking skills such as applying a thermodynamic principle to illuminate a problem. The
problem-solving method is built on the strategy described in the textbook. Reading
assignments were given frequently, followed by RQ.

A machine-learning model was developed to answer the research question: “How does
success in RRQ and prior knowledge in PHYS241 impact the success rate in MEEN241? The
model has good accuracy, class recall, and class precision. The models were, however, found
to be slightly better at predicting success rate than fail rate. This capability is welcome as we
seek to understand the effects of the dependent variables on the success rate in MEEN241.
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