
Proceedings of The 2018 IAJC  International Conference 
ISBN 978-1-60643-379-9 

 
 

Understanding the Factors that Promote Students’ Learning in 
Thermodynamics  

 
Paul Akangah 

North Carolina A&T State University 
pmakanga@ncat.edu  

 
Andrea Ofori-Boadu 

North Carolina A&T State University 
andreao@ncat.edu  

 
Francis Davis 

Kwame Nkrumah University of Science & Technology 
fdavis.coe@knust.edu.gh 

 
Awele Anyanhun 

Ford Motor Company 
engrawele@gmail.com 

 
 

Abstract 
 
Thermodynamics is an important subject in engineering training and forms the basis of pure 
engineering sciences. However, the performance of students in thermodynamics nationwide 
is poor. Not all students with high GPAs (>3.0) are able to pass thermodynamics on the first 
attempt. This study seeks to understand the correlation between the success rate in the 
Fundamentals of Thermodynamics (MEEN241) and the following dependent variables: 
General Physics (PHYS241), combined quizzes and reading quizzes, homework, tests, 
midterm examination, final examination, and prior GPA. We also designed assignments and 
assessments to capture acquired skills. These items test high-level thinking skills such as 
applying a thermodynamic principle to illuminate a problem. The research question this 
study tries to answer is, “How does success in quizzes and reading quizzes and prior 
knowledge in thermodynamics (PHYS241) impact the success rate in MEEN241?” To 
answer this question, we designed a machine-learning algorithm that is made up of decision 
trees, random forest ensemble, and Naïve Bayes classifiers that take as input the academic 
data of students (N=111) enrolled in MEEN241. The machine-learning algorithm makes the 
prediction by popular vote. The machine-learning model has an accuracy of 86.49%. The 
class recall is, respectively, 90.48 and 81.25%, for true pass and true failed. The class 
precision is, respectively, 86.36 and 86.67%, for predicated pass and predicted fail. 
Combined quizzes and reading quizzes is the root node in six out of seven classifiers, while 
PHYS241 was eliminated because the information content was less than the 0.1 threshold. 
These results show that success in RRQ impacts positively on the success rate in MEEN241 
while also showing that prior knowledge in the form of PHYS241 has no influence on the 
success rate in MEEN241. This study suggests that students’ success depends on developing 
and constantly improving good pedagogy and good study habits. 
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Introduction 
 
Engineering students’ poor performance in thermodynamics is chronic, prevalent, intolerable, 
and resistant to change (Dukhan & Schumack, 2013; Dukhan, 2016). The historic average 
success rate in MEEN241, Fundamentals of Thermodynamics, is 54.6% (Akangah, Parrish, 
Ofori-Boadu, & Davis, 2018), meaning that a significant number of students fail the class 
each semester. Karimi and Manteufel identified four categories of students who failed: (i) 
students who neither attend class regularly nor complete assigned homework, (ii) students 
who appeared engaged but their efforts did not result in significant learning and as a result 
did poorly on exams, (iii) students with poor conceptual understanding of the material, and 
(iv) students with weak conceptual understanding of thermodynamics (2014). 
 
Although PHYS241, General Physics I, is not a prerequisite to MEEN241, the mechanical 
engineering (ME) curriculum is structured so that students usually take PHYS241 prior to 
MEEN241. However, some students do not follow the prescribed curriculum and take 
MEEN241 before PHYS241. The ME undergraduate student handbook describes PHYS241 
as “a calculus-based physics course that covers the fundamental principles of Newtonian 
mechanics, heat, and thermodynamics” (Mechanical Engineering Department, 2017). 
 
About 59% of students enrolled in the MEEN241 class passed PHYS241, and the rest either 
failed or have not taken the course. It is therefore important to understand how prior 
knowledge in thermodynamics, PHYS241, helps or hinders learning and, specifically, how 
this prior knowledge impacts the success rate in MEEN241. This knowledge will help 
instructors more appropriately design instructions (Ambrose, Bridges, DiPietro, Lovett, & 
Norman, 2010).  
 
After surveying important literature on pedagogy, Lin, Yen, Liang, Chiu, and Guo (2016)  
found that pedagogical methods and students’ cognitive ability influence how they learn 
complex and abstract scientific concepts. Reasoning is an important human ability. Students 
use reasoning ability to draw conclusions and to solve problems, and this ability is a good 
predictor of academic achievement (Bhat, 2016). Hiebert and Grouws (2007) argue that 
developing students’ quantitative reasoning skills requires providing them with opportunities 
to learn by allowing students to struggle with understanding important concepts and 
persisting in problem solving. Dukhan (2016) and Dukhan and Schumack (2013) identify 
three main learning issues that students have in thermodynamics: 1) conceptual difficulties, 
2) struggle with integrating concepts and principles, and 3) not recognizing the relevance of 
thermodynamic principles in solving problems. Dukhan further reports that many instructors 
have implemented several instructional strategies; however, students’ performance in 
thermodynamics continues to be poor and unacceptable (2016). 
 
In this study, we aim to elucidate the importance of prior knowledge and well-designed 
assignments and assessments in promoting students’ conceptual understanding of 
thermodynamics. We also seek to assess their ability to integrate known concepts and 
principles in solving thermodynamic problems. The aims of this study are (i) assign reading 
lessons to students to facilitate the learning of thermodynamic concepts and principles; (ii) 
assign quizzes and reading quizzes (RRQ) that are designed to assess acquired skills such as 
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understanding of thermodynamic concepts, outlining thermodynamic problems, stating 
relevant assumptions, drawing schematics, drawing process diagrams, using calculus to 
derive equations, working from fundamental principles to solve problems, and working in 
consistent units; (iii) collect data on students’ performance in PHYS241; and (iv) collect data 
on homework, quizzes, reading quizzes, midterm exams, etc. conducted during the semester. 
We developed a machine-learning model to answer the research question: “How does success 
in RRQ and prior knowledge in thermodynamics, PHYS241 General Physics, impact the 
success rate in MEEN241?” 
 
Methods 
 
Participants 
 
The 111 participants were college students in an introductory thermodynamics class 
MEEN241, Fundamentals of Thermodynamics, during fall 2016 and spring 2017 semesters. 
We collected the academic records of these students, randomized the data, and assigned a 
random three-digit number to the resulting data. At the start of each semester, we collected 
students’ GPAs and the letter grades of students in PHYS241. Scores in the following course 
tasks were compiled at the end of the semester: homework (HW), quiz (Q), reading quiz 
(RQ), tests (T), midterm (MT), final examination (FE), and cumulative weighted average 
(CWA). We combined the Q and RQ to obtain RRQ. 
 
Materials 
 
For this study, we designed and assigned concept-intensive materials as reading lessons for 
the students. Students take notes as they read through the assigned lesson, and these notes 
could be used on the RQ that is based on the reading lesson. We also designed Q, RQ, and T 
to assess acquired skills such as defining concepts, framing problems, stating relevant 
assumptions, drawing schematics, drawing process diagrams, working from fundamental 
principles, and working in consistent units. These assessments test high-level thinking skills 
such as applying a thermodynamic principle to illuminate a problem. 
 
Procedure 
 
Data Summary. We assigned various weights to assignments and assessments. These weights 
are summarized in Table 1, which also summarizes the frequency of various assignments and 
assessments along with students’ success in these assignments and assessments 
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Table 1. Weights assigned to various assignments and assessments. 
 

 
 

 
To pass MEEN241, a student must achieve a minimum CWA of 60% as well as a minimum 
of 60% in any assignment or assessment to pass that assignment or assessment. It is not 
mandatory to pass all course assignments and assessments to pass MEEN241. For this study, 
we defined a high GPA as greater than or equal to 3.0, an average GPA is defined as less 
than 3.0 but greater than or equal to 2.0, and a low GPA as less than 2.0. 
 
Data Analysis. This study attempts to understand the relationship between the success rate in 
MEEN241 and the dependent variables: General Physics (PHYS241), combined quizzes and 
reading quizzes, homework, tests, midterm examination, final examination, and students’ 
prior GPA. To answer the research question, we used the RapidMiner data analytics platform 
to develop a machine learning model that consists of three algorithms—decision tree, random 
forest, and Naïve Bayes. RapidMiner (2017) is an integrated extendable environment for 
machine learning, data mining, text mining, and predictive analytics platform and has an 
excellent drag and drop graphics capability. It has powerful algorithms capable of solving 
many analytics problems. RapidMiner comes as a free or commercial version. We used the 
free version in this study. 
 
We ranked the attributes by information gain as shown in Table 2. Information gain is based 
on the reduction in entropy after a dataset is split on an attribute and is a measure of a 
reduction in uncertainty. Information gain measures the association between inputs and 
outputs and measures the relevance of an attribute. Entropy is a probabilistic measure of 
uncertainty or ignorance.  
 
  

ASSIGNMENTS & ASSESSMENTS
Types Weights Frequency Predictor Variables %Success Rate
HWs 10% 30 HW 83.78
RQ 5% 14 RQQ 63.1
Q 15% 16 MT 63.06

MT 20% 3 T 76.58
T 20% 6 FE 24.32

FE 30% 3 GPA (High, Ave, Low) 53.15; 45.95; 0.90
PHYS241 59.46

MEEN241 Pass-Rate 56.76

STUDENTS' SUCCESS
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mean prediction of the individual trees. The classic bootstrap method was used in this study, 
where three subsets were created at random with replacements from the original data. 
RapidMiner randomly selects the variables and decides on the best split to the node. This 
method does not prune the trees. We applied a minimal Gini index of 0.1 and a confidence of 
0.1. 
 
Naïve Bayes Classifier. The Naïve Bayes classifiers are a family of simple “probabilistic 
classifiers” and denote a supervised learning method in addition to a statistical method for 
classification. The method applies the Bayes’ theorem with strong (naïve) independence 
assumptions between the attributes. It assumes a certain probabilistic model to calculate 
uncertainty about the model in a vigorous way by determining probabilities of the outcomes. 
It is capable of solving diagnostic and predictive problems. Bayesian classification provides 
practical learning algorithms and can combine prior knowledge with observed data. It 
calculates explicit probabilities for hypothesis and it is robust to noise in the input data. 
 
The process diagrams for the ensemble algorithm are shown in Figure 2. 
 

 

(a) Ensembled Machine       
Learning Model 

 

(b) Vote, Apply model and 
Performance operators 
embedded in the Cross 
Validation operators 

 

(c) Decision Tree, Random 
Forest and Naïve Bayes 
operators within the Vote 
operator 

 
Figure 2. Ensembled machine learning model comprising decision tree, random forest and 

Naïve Bayes methods. 
 

Results 
 
Data Summary 
 
The boxplot distributions of the dependent variables are shown in Figure 3. 
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Figure 3. Distribution of students’ data: (a) Assignments and assessments, (b) GPA. 

 
Confusion Matrix 
 
The confusion matrix is shown in Table 3. 
 

Table 3. Confusion matrix of ensembled machine-learning algorithm. 
 

 True PASS True FAILED Class Precision 
Predicated PASS 57 9 86.36% 
Predicated FAILED 6 39 86.67% 
Class Recall 90.48% 81.25%  

 
The machine-learning model has an accuracy of 86.49%. The class recall or sensitivity are 
90.48% and 81.25%, respectively, for true pass and true failed. The class recall, which is 
expressed as a percentage, is defined as the ratio of relevant instances that have been 
retrieved over the total amount of relevant instances. The class precision or positive 
dependent value is 86.36% and 86.67%, respectively, for predicated pass and predicated 
failed. The class precision is defined as the ratio of relevant instances among the retrieved 
instances. 
 
Results from Modeling 
 
Decision Tree Algorithm. Figure 4 shows a schematic of the details of the decision tree. The 
highest node, RRQ, in the tree is the root node and represents the attribute with the lowest 
entropy or uncertainty. The tree is built by first determining which attribute can best separate 
an impure node into children (internal) nodes that are purer than the parent node. This 
attribute is then used to split the node. The children nodes are FE and T. This process is 
repeated until a node is pure or too small to be split further, producing the leaf nodes—
FAILED and PASS. A number of different criteria can be employed in this calculation; 
however, the Gini index criterion is used in this study. 
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This finding contradicts the general belief among school leaders, teachers, and parents that 
homework is a useful educational tool (Falch & Rønning, 2011). HW is influenced by many 
factors and effective HW design can promote student learning (Pelletier & Normore, 2007; 
Planchard, Daniel, Maroo, Mishra, & McLean, 2015; Bas, Senturk, & Cigerci, 2017). HW 
assignments are given for tutorial purposes, such as offering students with the chance of 
reviewing or practicing material that has already been presented in the class. When students 
copy from the solution manual or fail to submit their HW, they circumvent the process and 
the system fails. When students struggle with grasping important concepts and persisting in 
problem solving, they develop reasoning skills and that promotes academic achievement 
(Bhat, 2016; Hiebert & Grouws, (2007). 
 
It was determined, however, that prior knowledge in PHYS241 has no influence on the 
success rate in MEEN241. Even though the curriculum of PHYS241 deals with some of the 
basic concepts in thermodynamics such as heat and should impact the passing rate in 
MEEN241, it does not do so. This finding is in accordance with conclusions made in 
Akangah et al. (2018). The information gain in PHSY241 (~0.042) is low, and there is no 
association between success in PHSY241 and success in MEEN241. Ambrose et al. (2010) 
concluded that students’ prior knowledge can help or hinder their learning, but the data in 
this work does not support this conclusion, suggesting that course content in PHYS241 has 
no relevance to thermodynamics. We suggest a curriculum review to understand this 
discrepancy. 
 
The research results indicate that success in RRQ positively impacts the success rate in 
MEEN241. RRQ has the highest frequency of testing among the dependent variables. We 
observed the effect of frequent classroom teaching on student achievement. Many researchers 
agreed that, when done right, frequent testing helps students retain concepts longer (Bangert-
Drowns, Kulik, & Kulik, 1991; De Paola, & Scoppa, 2011; Karpicke, 2012; Carpenter, 2012; 
Einstein, Mullet, & Harrison, 2012). 
 
The information gain in GPA is higher than the threshold value of 0.1; however, the 
information gain is not high, and GPA is therefore not a very useful attribute for predicting 
the success rate in MEEN241. GPA is not a root node and only made it as a branch node in 
one out of six decision trees. GPA is a very vital parameter employed in admissions and job 
recruitment decisions among others. Notwithstanding all these, several studies have indicated 
that GPA can easily be predisposed to reporting biases (Felton & Koper, 2005), tenure of 
faculty members (Karimi & Manteufel, 2013), student-faculty interaction and desire to excel 
in college (Lambert, Rocconi, Ribera, Miller, & Dong, 2012), students engaging in part-time 
work during the semester (Dundes & Marx, 2006). As a result of these influences on GPA, it 
is therefore not surprising that GPA is not the most important factor in predicting who passes 
MEEN241. 
 
Conclusions 
 
This paper assesses the correlation between the success rate in MEEN241 (56.76%) and the 
following dependent variables: General Physics (PHYS241), combined quizzes and reading 
quizzes, homework, tests, midterm examination, final examination, and students’ prior GPA. 
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We used the entropy method to rank the dependent variables and eliminated variables with 
information gain less than the threshold of 0.1. The resulting dependent variables are T, MT, 
FE, GPA, and RRQ. 
 
Class assignments and assessments were designed to evaluate acquired skills such as 
understanding of thermodynamic concepts, framing problems, stating relevant assumptions, 
drawing schematics, drawing process diagrams, using calculus, working from fundamental 
principles, and working in consistent units. These assignments and assessments test high-
level thinking skills such as applying a thermodynamic principle to illuminate a problem. The 
problem-solving method is built on the strategy described in the textbook. Reading 
assignments were given frequently, followed by RQ. 
 
A machine-learning model was developed to answer the research question: “How does 
success in RRQ and prior knowledge in PHYS241 impact the success rate in MEEN241? The 
model has good accuracy, class recall, and class precision. The models were, however, found 
to be slightly better at predicting success rate than fail rate. This capability is welcome as we 
seek to understand the effects of the dependent variables on the success rate in MEEN241. 
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