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Abstract 
 
Using virtual reality on a driving simulator is a very important technique to detect driver 
behavior. It is a very common method to study driver behavior because it provides a safe 
research environment. This provides an opportunity to design a virtual world that can closely 
replicate the real world to help researchers collect data from subjects to understand drivers’ 
behavior in certain situations. Driving is associated with various visual and auditory signals that 
are controlled by cognitive factors. Fatigue and distractions are common experiences associated 
with driving and directly related to the mental workload of a driver. In this paper, the lateral 
variation characteristics (speed variability and maintenance of lane positioning) are measured on 
a virtual 10-mile stretch of Florida highway, Interstate 10 (Exits 199 to 209 A/B), to understand 
drivers’ behavior during lane changes and secondary tasks. This is a pilot study performed to 
help identify the root cause of the high number of traffic accidents on highways.  Data were 
collected from 18 healthy subjects. Each subject participated in two sessions, one involving 
individual driving and the other with distractive driving with co-passengers. Results imply that 
speed variability in the second session is much higher than during the first session in the case of 
younger drivers. Also, lane maintenance was poor while driving with co-passengers. Mental 
workload was also estimated for each subject, using NASA TLX. Mental workload was also 
higher for younger drivers than elderly drivers for the same task. People with a higher mental 
load index were more distracted while driving. This paper also includes a general driving model 
that shows the driving trends of young  and elderly drivers. The model quantifies the fact that 
younger drivers have a tendency to drive faster, which may add risk in highway driving in 
certain situations.  
 
Introduction 
 
Driving is an unavoidable task in most of the parts of the United States. US highways are 
shared by drivers of different age groups, ranging from 16 to 75 years of age (Wang & 
Knipling, 2004). Florida, especially, has many elderly drivers. Records from National 
Highway Traffic Safety Administration (NHTSA) indicate that 37,486 people were killed in 
34,436 motor vehicle crashes in 2017, an average of 102 people each day (Bengler, 
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Figure 2. Statistics showing factors responsible for road accidents. 
 
It is also important to know which age group is facing the highest number of crashes in order 
to study the behavioral differences in drivers’ age groups. Male and female drivers usually 
have different response time/reaction time to stimuli. Florida Department of Highway Safety 
and Motor Vehicles also published a study that states the age groups that are highly exposed 
to accidents on highways (Trivedi, Gandhi, & McCall, 2007). As Figure 3 indicates, young 
and elderly drivers have more accidents than average aged groups. 

 

 
 

Figure 3. Florida highway accident statistics. 
 
The age group between 15 and 19 usually has good eyesight whereas 75+ may have 
deteriorating eyesight, but both are prone to accidents. This definitely implies that eyesight is 
not the reason for accidents, and distraction or reaction time might be a possible reason for 
crash in these age groups (Cheng & Trivedi, 2010).  
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to modify the driving scenario for accuracy and precision (Cao, Chintamani, Pandya, & Ellis, 
2009). 
 
In this study, we used a driving simulator to collect data. The study involves lane 
maintenance and speed variance in these two scenarios, monitoring from the simulator with 
some statistical analysis to analyze the general driving behavior on a highway. Also, the 
mental load of the drivers is analyzed with NASA-TLX after the first session to understand 
the mental work demand on a driving simulator (Salvucci & Liu, 2012).  Each participant 
also completed a survey questionnaire for data collection, to store driving history. All drivers 
were trained on the simulator before the actual data collection, and they signed a waiver 
before their participation in this research. 
 
System Design 
 
System design in this experiment involved scenario design on the driving simulator. The 
scenario is designed based on local intersections in Tallahassee, Florida, along I-10 (Exit 
209A/B) that are known to have a higher than average rate of roadway incidents (Salvucci, 
2004). The environment is designed to replicate the I-10 209A/B exit as closely as possible. 
The scripting language for controlling the traffic in the virtual world is TCL, a scripting 
language used in Hyperdrive (Kuge, Yamamura, Shimoyama, & Liu, 2009). 
 
The scenario starts from merging into the highway from an exit with flowing traffic and then 
driving on a three-lane highway with various curves. There are two exits designed with 
ramps mimicking 209A/B. This exit is a one-lane, circular road. The simulated 3D design is 
shown in Figure 4. 
 

 
 

Figure 4. 3D Simulated design of Exits 2019A/B. 
 
The scenario is programmed to include location triggers (yellow lines in Figure 4). 
Hyperdrive supports TCL scripting, which is a high-level machine language, and hence the 
simulated cars are introduced in the scenario by writing code in TCL (Salvucci, 2006). An 



Proceedings of The 2018 IAJC International Conference 
ISBN 978-1-60643-379-9 

 
 

example of this scripting is shown in Figure 5. Thirty-two vehicles of different makes and 
models are used as well as commercial vehicles like buses and 18-wheeler trucks. When the 
participant’s car approaches the location trigger to merge onto the highway, all these 32 cars 
starts generating one after another to form the highway traffic. 
 
 

 
 

Figure 5. TCL scripting for simulated car. 
 

Eighteen subjects participated in this study, and everyone completed the entire task 
successfully. All subjects who participated in this study had been driving for at least two 
years in the United States. None of the participants had a history of any major or minor 
accidents within the last two years. Before the experiment started, participants completed a 
questionnaire to assess their driving history and typical driving behavior. The survey had 23 
questions ranging from specific demographics to decision-making questions such as 
(Salvucci, Boer, & Liu, 2001): 
 
 How do you usually merge from a ramp onto the freeway? 
 Do you usually face any difficulty/challenge when you are about to merge onto a 

freeway? 
 Do you usually maintain the same lane after you merge onto the freeway, or do you 

change lanes? 
 Do you usually face any challenge/difficulty when you change lanes on a highway? 
 Do you prefer getting messages by mobile or through a signal at the merge or lane change 

to have a safer merge/change without any delay? 
 

After this survey, each subject received a set of instructions about how to drive on the 
simulator. The first session was recorded for all 18 participants, one after the other, followed 
by the second scenario recording one by one. The total time to record the whole experiment 
for all five subjects with two sessions was 2 hours and 30 minutes. 
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Primary Task Driving Session 
 
This scenario lasted for about 5-6 minutes for each subject. The participant was told to merge 
into the highway with a maximum ramp speed of 35mph and maximum highway speed of 
60mph. They were instructed to change lanes whenever possible and safe. After merging 
onto the highway, they were told to take the first exit. After taking this exit, the facilitator 
signaled them to park the car in the emergency lane, which concluded the session.  
 
Secondary Task Driving Session 
 
The second scenario also lasted for 5-6 minutes. In this scenario, the instructions were all the 
same as for the first scenario, except this time the participants were told to take the second 
exit instead of first after merging onto the highway. The speed limit and lane changing 
instructions were the same. In addition, three passengers were introduced in the car along 
with the driver. The driver and co-passengers were instructed to converse about random 
topics that involved discussion and some mild debate. So conversation with co-passengers 
was the secondary task in this scenario. Immediately after this session, the participant was 
instructed to take an online questionnaire about the driving task on the NASA TLX website 
in order to evaluate their cognitive mental load after driving. 
 
Results 
 
The results show a comparison of driving behavior between two age groups. Data are taken 
directly from simulator and converted into Microsoft Excel for analysis. As the driving speed 
of each subject is different, they finished the whole task at different times. So the first 280 
seconds from each recording is taken for uniform analysis. In this study, we considered the 
velocity (mph). We also noted the maximum and minimum speed of every participant in both 
the sessions. Since variance is a more robust measure of performance, we determined the 
speed variability for each subject as shown in Figure 6. Additionally, according to some 
researchers, speed variability is responsible for more accidents on roadways than vehicle 
velocity.   
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This proves that a secondary task while driving hindered proper lane maintenance. Subject 2 
of the young driver profile went off road only once when he drove alone, but he went off 5 
times when he drove with co-passengers. Similarly, Subject 5 of the young driver group went 
off 3 times during the first session and 8 times for the second. This shows a big variability of 
driving during multitasking. For Subject 4 of this group, the data are interesting. There is no 
off-road driving in the first scenario but two times in the second. There can be several 
reasons for this result. It is assumed that it might be driver fatigue, as the data were recorded 
on the same day for both scenarios. But the more logical reason might be multitasking. In the 
second scenario, the driver was actively talking to co-passengers for the whole session, 
which might have caused increased distraction. Hence, lane positioning was not well 
maintained while performing other tasks along with driving. 
 
If we look at the elderly driver result, their off-road driving in the second scenario is not too 
high compared to the first scenario’s speed variability. Elderly drivers were less distracted by 
multitasking and could maintain lanes more accurately than the younger group. 
 
To gain deeper insight about causes that influence a driver’s mental and emotional state, the 
NASA TLX results are compared with the simulation data. TLX is online software developed 
by NASA that is used for subjective analysis of the workload and mental load of a person. It 
has an online set of questions related to the performed task, and it calculates the mental load, 
physical load, effort, and frustration levels based on the individual’s responses. Mental load 
in NASA TLX measures how perceptual the activity was and whether the activity was hard 
or easy. As driving in a simulator is more of a mental task, we have considered the cognitive 
mental load and the frustration level of each driver after the first scenario to evaluate total 
mood disturbance. Each subscale in NASA TLX ranges from 1 to 20. It evaluates cognitive 
factors by 15 pairwise combinations depending on the participants’ response in the score 
sheet. The result is evaluated based on how much a cognitive factor contributes to affect 
other factors. Table 1 shows NASA TLX results for each of the subjects in the young profile, 
and Table 2 is the NASA TLX score for the elderly drivers. 
 

Table 1. NASA TLX for young driver profile (20-30 years old). 
 

Subject Mental Load Frustration Total Cognitive Disturbance 
1 81 66 147 
2 82 16 108 
3 91 79 170 
4 81 41 122 
5 64 38 102 
6 18 28 46 
7 58 18 76 
8 72 50 122 
9 27 6 33 

Average   102.88 
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Table 2. NASA TLX for elderly driver profile (55-65 years old). 
 

Subject Mental Load Frustration Total Cognitive Disturbance 
1 69 64 133 
2 39 54 93 
3 44 26 70 
4 25 15 40 
5 51 60 111 
6 59 45 104 
7 61 50 111 
8 55 13 68 
9 62 9 71 

Average   68.77 
 

The result from the NASA TLX data aligns well with our speed variance and off-road 
driving results. The metal load and the frustration level of each subject is considered to 
calculate the total cognitive disturbance for each subject. The average cognitive disturbance 
for the younger subject is 102.88 from Table 1, and the average cognitive disturbance for 
elderly subjects is 68.77. This clearly states that the elderly subjects have a stable emotional 
balance, and hence they are not much distracted with secondary tasks such as conversation. 
But the cognitive disturbance for young drivers is much higher compared to the elderly 
drivers in the second scenario. This is extremely dangerous, as it causes distraction while 
driving. 
 
Conclusion 
 
This paper has explained an experiment that examined behavior of lateral variation of 
vehicles using speed variance and off-road frequency and validation by cognitive workload 
measurements. This method of analysis helps in a basic understanding of driver behavior and 
emotional disturbances while performing a secondary task. Calculating the variance of speed 
and off-road driving in both individual and multi-passenger scenarios allows for more 
research in this field. Future studies can be conducted on the effect of emotional disturbance 
on drivers while talking to co-passengers or on a mobile phone. Identifying this aspect might 
help reduce highway accidents.  
 
Also, this study has been conducted on younger and elderly drivers. Although it is known 
that motor skills and reflex actions of every person degrade with age, with conversation as 
type of secondary task the result is reverse, indicating more stable emotional control with 
age. So for younger drivers, emotional disturbance while driving might result in fatal 
accidents. This study validates the argument with an objective analysis of mental and 
cognitive disturbance to formulate an algorithm of the maximum distraction of an individual, 
beyond which might result in fatal accidents. 
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