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Abstract 

There are various solar systems installed around the globe. Some systems are designed to 
track the sun, and others are fixed panel systems. The stationary systems lose potential 
power since most of the time they are not perpendicular to the sun. This purpose of this 
project is to investigate the viability, at high latitude (>40°), of having a solar system 
track the sun throughout the day. By adjusting the angle of the panels, the solar panels 
capture power that would typically be unattainable through a fixed panel system. This 
project uses a set of actively controlled solar panels and a set of stationary panels to 
compare power collected on any given day. The power generated from these panels is fed 
into a charge controller, which charges a set of deep cycle batteries. Voltage readings are 
taken to allow for accurate comparison between the fixed and tracking solar panels. By 
comparing the data between the two sets of panels, a net power increase of up to 30% is 
achieved. 

Introduction 

Solar energy is radiant light and heat from the Sun that is harnessed using a range of 
ever-evolving technologies such as solar heating, photovoltaics, solar thermal energy, 
solar architecture, molten salt power plants, and artificial photosynthesis. To capture solar 
energy, a solar tracker can be used. This is a device that orients a payload toward the Sun. 
Payloads are usually solar panels, parabolic troughs, Fresnel reflectors, lenses, or the 
mirrors of a heliostat. For flat-panel photovoltaic systems, trackers are used to minimize 
the angle of incidence between the incoming sunlight and a photovoltaic panel. This 
increases the amount of energy produced from a fixed amount of installed power 
generating capacity. In standard photovoltaic applications, it was predicted in 2008-2009 
that trackers could be used in at least 85% of commercial installations.  
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In 2017, the US Energy Information Administration announced that more than half of the 
utility-scale photovoltaic systems track the sun throughout the day (Today, 2017). A 
significant amount of research has been conducted on the feasibility of utilizing solar 
tracking systems and their advantages (Mousazadeh, Keyhani, Javadi, Mobli, Abrinia, & 
Sharifi, 2009; Chong & Wong, 2009; Abdallah & Nijmeh, 2004; Al-Mohamad, 2004; 
Eskiçirak, Akyol, & Karakaya, 2014). The systems that require manual adjustments of 
solar panels have significant disadvantages due to lower efficiency and manual labor 
involvement. The goal of this project is to establish if an open-loop, single axis, active 
tracking system is viable in high latitude (>40º) locations. Directly comparing the power 
generation from a fixed and tracking panel system can determine the effectiveness of the 
system.  

Project Rationale 
 
As the efficiency of solar panels rises, it becomes more and more advantageous to 
implement solar tracking systems in residential and small commercial applications. These 
tracking systems should provide an increase in power by spending more time 
perpendicular to the sun.  
 
There are two main categories of tracking systems, open-loop and closed-loop. Open-
loop systems rely on known coordinates for both solar azimuth and elevation. These 
systems operate based on solar positioning and can be accurate down to thousandths of a 
degree. Also, since no sensor feedback is required, the system is less complex. Closed-
loop systems use different forms of light sensors to keep the array perpendicular to the 
sun (Safan, Shaaban, & El-Sebah, 2017; Reddy, Chakraborti, & Das, 2016). These 
systems are more sensitive to partial shading or covering with snow or dust due to the 
high voltage levels provided by the perpendicular panels. Another type of closed-loop 
system uses the panels themselves as light sensors (Sharma, Vaidya, & Jamuna, 2107). 
This system has similar problems as other closed-loop systems, with the added 
disadvantage of limiting panel connections. Another disadvantage of closed-loop systems 
is the hunting time. For a one-axis tracker, the array continues to move until the power 
has gone down and then moves back into the maximum power position. Dual-axis 
trackers frequently update the position based on the readings from light sensors; anytime 
this happens, the control system must take a minimum of three readings before settling on 
a point. In both cases, excess power is consumed by running the motors and controllers 
more often. This is especially true in the dual-axis tracking system (Bahrami, Okoye, & 
Atikol, 2016). 
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Figure 1. Photograph of fixed and tracking system setup. 

System Overview 
 
This project focuses on the use of a hybrid tracking panel array. This type of system uses 
an open-loop system to automatically track along the solar azimuth and a manual 
adjustment for the altitude of the panels. At northern latitudes, the azimuth of the sun 
changes much more than the altitude throughout the day. Due to this, active tracking 
along the altitude would increase the complexity of the system with no significant gain in 
performance.  
 
Since solar intensity varies from day to day, a set of stationary panels and a set of 
tracking panels are used simultaneously, allowing accurate daily comparisons of data. 
Figure 1 shows a picture of the tracking and fixed systems; the tracking system is on the 
right and the fixed system on the left. An Arduino MEGA R3 controls the linear actuator 
to track the sun across the azimuth, and it monitors the voltages of the solar panels. This 
system uses pre-programmed angles to move the tracking panels throughout the day, 
changing the solar tracker angle every half an hour. Information such as location of the 
system and date and time information were used to calculate the required angles for 
adjustment of the panels (Gronbeck, 2009).  The voltage from the panels is fed into a 
charge controller, which regulates the output to the battery array for effective charging. 
An inverter is connected to the battery array to allow for an AC output. Grid integration 
is possible with this system, provided that the inverter outputs a complete sine wave. Less 
expensive inverters output a modified sine wave that is not as efficient and are not 
compatible for grid integration. 
 
Figure 2 shows the main components as they are connected in the system. The tracking 
and fixed solar panels are Renogy RNG-100D 100W models (Renogy, 100W, n.d.). 
These were chosen for their balance of efficiency and cost. The linear actuator is from 
Fergelli Automations (Model FA-PO-150-12-8). It has a 150lb lift capacity and an 8-inch 
stroke with Bournes potentiometer feedback. The position feedback is crucial to accurate 
angle measurements. The Arduino used is a MEGA R3 with an Adafruit assembled data-
logging shield (Earl, 2017). The data-logging shield was used both for voltage 
measurements and for the feedback sensor on the linear actuator. The charge controller is 
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Figure 3. System schematic. 
 

Programming Approach and System Operation Modes 

The main approach when writing the code and deciding operation modes was to create the 
code to be efficient, resulting in the Arduino consuming less power and improving the 
efficiency of the system as a whole. The code has three basic operation modes: rest, 
stationary data collection, and data collection with panel movement. The start and stop times 
of these three modes are based on the sunrise and sunset times for the current month.  

Rest mode is set to start at sunset and end at sunrise. These specific times are set by the user 
at the beginning of each month, since sunset and sunrise are not at constant times throughout 
the year. When the controller first enters rest mode, it moves the panels to the correct 
position for the morning sun and then wait until sunrise. 

Stationary data collection mode happens at two separate time periods during the day. The 
reason for a separate data collection mode outside of the panel movement with data 
collection mode is due to the mechanical limitations of the panel holder, which is discussed 
later in this paper. This mode operates from sunrise until the data collection with panel 
movement mode begins. This mode resumes operation at the end of the data collection with 
panel movement mode and operates until sunset. The stationary data collection mode takes 
voltage readings every 10 seconds and stores it to an SD card for later analysis. Due to the 
mechanical limitations of the panel holder, since the code keeps the panels aimed in the 
general direction of the sun when outside the movement range, there should still be an 
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increased amount of power intake by the panels. This is why there are separate modes for just 
stationary data collection and data collection with panel movement.  
 
Data collection with panel movement mode operates during the peak hours of solar intensity. 
This mode operates between three and five hours a day, depending on the time of year. The 
movement starts between 11:30 and 12 and concludes between 3:30 and 4:30, again, 
depending on the month. Due to the mechanical limits of the panel holder, the only azimuth 
angles (Bas, 2011) the system can adjust to are between -30º to 45º from due south. This 
means that panel adjustment only happens 8 to 10 times a day. While in this mode, the panels 
move every half an hour to a set angle, depending on the time and the month. As with the 
stationary data collection mode, this mode takes a data reading every 10 seconds and stores 
those data to the SD card for future analysis. 
 
Figure 4 shows a flowchart of how the code and microcontroller operate throughout the day. 
The first part of the flowchart shows the startup procedures of the code, microcontroller, and 
data-logging shield. During the power-up phase of the microcontroller, the standard 
initializations of the microcontroller are executed. Next, the data-logging shield is powered 
on, and the microcontroller verifies it is functioning properly. Finally, the code checks to 
verify the presence of an SD card. It then creates a new CSV file on the SD card and labels 
the first line of the CSV file with the appropriate labels for the data being recorded. This part 
of code is only executed on startup and is then superseded by the loops shown on Figure 3. 

Once the initializations have been completed, the code acquires the current time from the 
data-logging shield, which uses an onboard RTC (real time clock) chip to keep an accurate 
time. Depending on the time of day, the code goes into one of the three modes of operation as 
described above. The bottom loop of Figure 3 shows rest mode, which first verifies the 
panels are at their home position. If they are not at their home position, the microcontroller 
moves them back to their home position. The code then waits until sunrise to begin data-
logging. The top loops of Figure 3 show both stationary data collection mode as well as data 
collection with panel movement mode. The microcontroller decides which mode to function 
in based on the time acquired from the data-logging shield (Solmetric, 2008). If the current 
time is within the preset timeframe for data collection with panel movement mode, the code 
then checks the time against the preset times for panel angle adjustment. If the current time 
matches the preset times for readjustment, the microcontroller adjusts the panels to the 
appropriate angle for the current time. If is not time to move the readjust the panel’s angle, 
the microcontroller then uses the data-logging shield to record the current data readings of 
the system. If the current time acquired from the data-logging shield is outside the timeframe 
for data collection with panel movement mode, the microcontroller then enters stationary 
data collection mode and only record data. 
 
Cost and Parts List 
 

Table 1 provides a list of each part and their associated cost. This table is provided to aid in 
the recreation of the design and to allow the data to easily be reproduced. 
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Figure 4. Microcontroller code flowchart. 

 

Table 1. Detailed parts list and their associated cost. 

Quantity Item Description Cost per unit Cost Total 

1 
Outback Power FP1 
VFXR3648A solar kit 
 

3600W 48VDC pre-wired 
MPPT charge controller and 
inverter system 

$3660.10 $3660.10 

2 Solar panel expansion 3 100W Renogy solar panels $377.97 $755.94 

2 Renogy battery 100Ah deep cycle battery $229.99 $459.98 

1 Arduino 
Arduino MEGA R3 
microcontroller 

$44.95 $44.95 

1 Data-logging shield 
Adafruit Industries data-
logging shield board 

$12.99 $12.99 

1 Relay x2 12V 30A relay $8.33 $8.33 
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Conclusions and Future Work 
 
Short term data collection and analysis show the tracking system generates roughly 15 to 
25% more power than a traditional fixed panel system. Due to limited data, further 
experimentation and analysis are required to reach a more definite conclusion as to the 
viability of a hybrid, semi-passive solar harvesting system versus a traditional fixed panel 
system. However, due to the amount of additional voltage gain and the consistency of the 
data, shown in Figure 5, it is evident that this system is could be feasible as a power-
harvesting system.      
 

Further data collection and analysis are needed to develop a more definite conclusion as to 
the viability of this system. The system is set up to collect identical sets of data throughout 
the coming months. To improve the accuracy of future data collection, a few upgrades will 
need necessary for the current system; namely, connecting the grid-tie compatible inverter to 
the electrical grid. This would allow for the best for data collection, as it would use all of the 
energy generated by the solar panels. Data collected during those months will then be used to 
further support or refute our claim. 
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